Sarcomere alignment is regulated by myocyte shape.

نویسندگان

  • Mark-Anthony Bray
  • Sean P Sheehy
  • Kevin Kit Parker
چکیده

Cardiac organogenesis and pathogenesis are both characterized by changes in myocyte shape, cytoskeletal architecture, and the extracellular matrix (ECM). However, the mechanisms by which the ECM influences myocyte shape and myofibrillar patterning are unknown. We hypothesized that geometric cues in the ECM align sarcomeres by directing the actin network orientation. To test our hypothesis, we cultured neonatal rat ventricular myocytes on islands of micro-patterned ECM to measure how they remodeled their cytoskeleton in response to extracellular cues. Myocytes spread and assumed the shape of circular and rectangular islands and reorganized their cytoskeletons and myofibrillar arrays with respect to the ECM boundary conditions. Circular myocytes did not assemble predictable actin networks nor organized sarcomere arrays. In contrast, myocytes cultured on rectangular ECM patterns with aspect ratios ranging from 1:1 to 7:1 aligned their sarcomeres in predictable and repeatable patterns based on highly localized focal adhesion complexes. Examination of averaged alpha-actinin images revealed invariant sarcomeric registration irrespective of myocyte aspect ratio. Since the sarcomere sub-units possess a fixed length, this observation indicates that cytoskeleton configuration is length-limited by the extracellular boundary conditions. These results indicate that modification of the extracellular microenvironment induces dynamic reconfiguring of the myocyte shape and intracellular architecture. Furthermore, geometric boundaries such as corners induce localized myofibrillar anisotropy that becomes global as the myocyte aspect ratio increases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width.

A ventricular myocyte experiences changes in length and load during every beat of the heart and has the ability to remodel cell shape to maintain cardiac performance. Specifically, myocytes elongate in response to increased diastolic strain by adding sarcomeres in series, and they thicken in response to continued systolic stress by adding filaments in parallel. Myocytes do this while still keep...

متن کامل

Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers.

Because cell shape and alignment, cell-matrix adhesion, and cell-cell contact can all affect growth, and because mechanical strains in vivo are multiaxial and anisotropic, we developed an in vitro system for engineering aligned, rod-shaped, neonatal cardiac myocyte cultures. Photolithographic and microfluidic techniques were used to micropattern extracellular matrices in parallel lines on defor...

متن کامل

Matrix elasticity regulates the optimal cardiac myocyte shape for contractility.

Concentric hypertrophy is characterized by ventricular wall thickening, fibrosis, and decreased myocyte length-to-width aspect ratio. Ventricular thickening is considered compensatory because it reduces wall stress, but the functional consequences of cell shape remodeling in this pathological setting are unknown. We hypothesized that decreases in myocyte aspect ratio allow myocytes to maximize ...

متن کامل

Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip.

The lack of a robust pipeline of medical therapeutic agents for the treatment of heart disease may be partially attributed to the lack of in vitro models that recapitulate the essential structure-function relationships of healthy and diseased myocardium. We designed and built a system to mimic mechanical overload in vitro by applying cyclic stretch to engineered laminar ventricular tissue on a ...

متن کامل

A Mathematical Model of the Mouse Ventricular Myocyte Contraction

Mathematical models of cardiac function at the cellular level include three major components, such as electrical activity, Ca(2+) dynamics, and cellular shortening. We developed a model for mouse ventricular myocyte contraction which is based on our previously published comprehensive models of action potential and Ca(2+) handling mechanisms. The model was verified with extensive experimental da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell motility and the cytoskeleton

دوره 65 8  شماره 

صفحات  -

تاریخ انتشار 2008